Normal Scalar Curvature Conjecture and its applications

نویسندگان

  • Zhiqin Lu
  • Daniel W. Stroock
چکیده

In this paper, we proved the Normal Scalar Curvature Conjecture and the Böttcher–Wenzel Conjecture. We developed a new Bochner formula and it becomes useful with the first conjecture we proved. Using the results, we established some new pinching theorems for minimal submanifolds in spheres. Published by Elsevier Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of the Normal Scalar Curvature Conjecture

where {e1, · · · , en} (resp. {ξ1, · · · , ξm}) is an orthonormal basis of the tangent (resp. normal) bundle, and R (resp. R) is the curvature tensor for the tangent (resp. normal) bundle. In the study of submanifold theory, De Smet, Dillen, Verstraelen, and Vrancken [5] made the following normal scalar curvature conjecture: Conjecture 1. Let h be the second fundamental form, and let H = 1 n tr...

متن کامل

Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar

The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...

متن کامل

The Curvature of the Bogoliubov-kubo-mori Scalar Product on Matrices

The state space of a finite quantum system is identified with the set of positive semidefinite matrices of trace 1. The set of all strictly positive definite matrices of trace 1 becomes naturally a differentiable manifold and the Bogoliubov-Kubo-Mori scalar product defines a Riemannian structure on it. Reference [4] tells about the relation of this metric to the von Neumann entropy functional. ...

متن کامل

Scalar Curvature, Moment Maps, and the Deligne Pairing *

Let X be a compact complex manifold and L → X a positive holomorphic line bundle. Assume that Aut(X,L)/C× is discrete, where Aut(X,L) is the group of holomorphic automorphisms of the pair (X,L). Donaldson [D] has recently proved that if X admits a metric ω ∈ c1(L) of constant scalar curvature, then (X,L) is Hilbert-Mumford stable for k sufficiently large. Since Kähler-Einstein metrics have cons...

متن کامل

ar X iv : m at h - ph / 0 31 00 64 v 1 2 9 O ct 2 00 3 On the monotonicity conjecture for the curvature of the Kubo - Mori metric ∗

The canonical correlation or Kubo-Mori scalar product on the state space of a finite quantum system is a natural generalization of the classical Fisher metric. This metric is induced by the von Neumann entropy or the relative entropy of the quantum mechanical states. An important conjecture of Petz that the scalar curvature of the state space with Kubo-Mori scalar product as Riemannian metric i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008